

CCMC Standardized
Model Data

Your
Code/Application

Kameleon
 Conversion  Access  Interpolation

Kameleon is a software suite that is being developed at the
CCMC to address the difficulty in analyzing and disseminating
the varying output formats of space weather model data.
Through the employment of a comprehensive data format
standardization methodology, Kameleon allows heterogeneous
model output to be stored uniformly in a common science data
format. The converted files contain both the original model
output as well as additional metadata elements to create
platform independent and self-descriptive data files. To
facilitate model data dissemination, data reuse, and code reuse
– the Kameleon access and interpolation library provides direct
access to both the model data as well as the embedded
metadata.

Access and Interpolation Library Overview

After the original model output
has been converted into a
standardized science data
format with accompanying
metadata elements, access to
the data can be achieved by
utilizing the Kameleon Access
and Interpolation Library. The
library provides a user friendly interface to the standardized data, offering both spatial and temporal interpolation functionality
along with several metadata extraction routines. By using the Kameleon library, the underlying format and storage structure is
hidden from the end user masking the complexity of the native interface associated with the implemented science data format.
At the same time, users still have the option to use the native science data format access tools and routines providing even
greater programming flexibility. The routines provided in the Kameleon access/interpolation library can be called from any C
compatible programming language, allowing users to analyze model data using their preferred application. Integrating the
Kameleon library into an existing application can be done in an efficient manner alleviating the need to become familiar with the
internal storage layout and structure of the data files. The standardized model output used in conjunction with the Kameleon
access/interpolation library, facilitates both data sharing as well as software reuse, by allowing the integration of new model data
analysis capabilities into existing or new software applications.

Fortran Java
C/C++ Perl
IDL Vtk
OpenDx Your App

Call From Any C Compatible
Programming Language

Features

The interpolation routines can extract data directly from
the disk or - for more data rich applications such as field
line tracing - specified variables can be stored in main
memory to reduce disk access and improve efficiency.
Metadata extraction routines are provided to quickly
extract both global and variable metadata elements
imbedded in each standardized model output file.
4D interpolation - using the time_interpolate() routine,
users can specify a directory of data, and extract data for
any given variable, position, and time.
The main library is written in C, yielding both static .a
and shared .so libraries
FORTRAN interface - for convenience, a fortran
interface has been provided addressing fortran-to-c
argument passing, string handling, and other compatibility
issues.
IDL interface – contains routines that are callable
directly from IDL in the same manner as native IDL
routines through LINKIMAGE.

HDF5 (coming soon)

CDF 3.0

CDF 2.7

Science Data Format
Output Options:

Solar: MAS (Under Development)

Heliosphere: ENLIL

Ionosphere: CTIP

3D Magnetosphere: OpenGGCM/UCLA-GGCM

3D Magnetosphere: BATSRUS

KAMELEON
library

Current Standardized Model
Output Availability

http://ccmc.gsfc.nasa.gov 

December 2006

Your Code/Application

Standardized CCMC
Model Data

KAMELEON
library

Implementation

The Kameleon Access and Interpolation Library includes a set of example programs that illustrate how routines from the
library can be implemented. C and FORTRAN example programs are included that perform spatial and temporal
interpolation, as well as metadata extraction functions. Below are two of the example programs included with the distribution.
The C example, time_interp_example.c, illustrates how 4D interpolation can be implemented from a simple C driver program.
The FORTRAN example, f2c_interp_open_ggcm.f, outlines how spatial interpolation can be performed from a simple
FORTRAN 77 driver program. The C and FORTRAN example programs are automatically compiled during the library build,
and can be used out of the box. The Source code of the example programs can be used as guidelines on how to integrate
specific library functionality into an existing application. Compile examples are also included describing how to compile and
link to either the static .a or shared .so library.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[])
{
extern long init_time(char *, double *, double *);
extern float
time_interpolate(char*,double,float,float,float);
long status;
char data_path[750];
char variable[10];
float X, Y, Z;
double time, start_time, end_time;
float sample_time_interval;
float time_interpolated_value;
strcpy(data_path, argv[1]);
strcpy(variable, argv[2]);
X = atof(argv[3]);
Y = atof(argv[4]);
Z = atof(argv[5]);
sample_time_interval = atof(argv[6]);
status = init_time(data_path, &start_time, &end_time);
printf("Simulation start_time:\t%f msec\n", start_time
);
printf("Simulation end_time:\t%f msec\n", end_time);
for(time=start_time;time<=end_time;time+=sample_time_int
erval)
{
time_interpolated_value=time_interpolate(variable,time,X
,Y,Z);
printf("%s [%f, %f, %f] @ %f
milliseconds\t%f\n",variable,
X,Y,Z,time,time_interpolated_value);
}
return 1;
}

 program f2c_interp_open_ggcm
c Three functions used to interpolate
c data from a specified batsrus cdf file
 external f2c_open_cdf, f2c_close_cdf,
f2c_interp_bats_cdf
c Variables to be used for interpolation and
data extraction
 character*150 cdf_file_path
 real*8 x,y,z
 real*8 interpolated_value
 integer status
 character*50 var_to_read
c --- set your actual path name here ---
 cdf_file_path='open_ggcm.cdf ’
c Open the cdf file
 status=f2c_open_cdf(cdf_file_path)
c --- set your position values in GSE ---
 x=-55.0
 y=12.0
 z=20.0
c --- set name of variable of interest ---
 var_to_read='bx ’
c --- call the interpolation routine ---
 status=

1f2c_interp_open_ggcm_cdf(x,y,z,interpolated_valu
e,var_to_read)
c --- close the currently open cdf file
 status=f2c_close_cdf(0)
 write(*,*) var_to_read, interpolated_value
 end

open_cdf(cdf_name, 0);

interpolate_batsrus_cdf(variable1, X, Y, Z, 0, 0);

close_cdf();

get_units(variable_name);

interpolate_ucla_ggcm_cdf(variable1, X, Y, Z, 0, 0);

gattribute_float_get(attribute_name);

gattribute_char_get(attribute_name); CDF Library

Kameleon Access & Interpolation Library

init_time(data_path, start_time, end_time)

time_interpolate(variable_name, time, X, Y, Z)

vattribute_get(variable_name, attribute_name);

FORTRAN INTERFACE USER
CODE open_cdf(cdf_name, 0);

interpolate_batsrus_cdf(variable1, X, Y, Z, 0, 0);

close_cdf();

For spatial interpolation, an
example of how only three calls
are required to get a value for any
specified variable and position.

IDL INTERFACE

Highlighted Code – Kameleon Library Calls

